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The initiation of reaction-diffusion travelling waves in two regions coupled together by the 
linear diffusive interchange of an autocatalytic species is considered. In one region a purely 
autocatalytic production process (either quadratic or cubic) is assumed, while in the other 
region there are both autocatalytic and decay processes (either linear or quadratic). A perturba- 
tion analysis based on small initial inputs of the autocatalyst is presented. This indicates condi- 
tions under which travelling wave formation is possible as well as identifying two special cases 
which need further consideration, namely cubic autocatalysis in both regions with quadratic 
or linear decay in one region. The former case gives rise to a zero eigenvalue and the perturba- 
tion method has to be extended to include the higher order terms to resolve this case. The latter 
case requires a threshold on the initial input of autocatalyst and further information about 
this threshold is gained from a solution for strong coupling. 

1. I n t r o d u c t i o n  

In a previous paper  [1] we considered the reaction-diffusion travelling waves  
that  can develop in a coupled system involving simple isothermal autocata lyt ic  (or 
chain-branching) kinetics. More  specifically, we assumed that  reactions took  place 
in two separate  and parallel regions, with, in region I, the react ion being given by  
quadrat ic  autocatalysis  

A + B - - - ~ 2 B  rate klab ( la)  

together  with a linear decay (or termination) step 

B - + C  rate k2b ( lb)  

(a and b are the concentrat ions of  reactant  A and autocatalyst  B, the ki are the 
rate constants  and C is some inert product  o f  reaction). The react ion in region II 
was jus t  the quadrat ic  autocatalytic product ion step (la) .  The two regions were 
assumed to be coupled via a linear diffusive interchange of  the autocatalyt ic  species 
B. We  took  bo th  regions to be infinite in extent and considered the p ropaga t ion  o f  
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plane waves travelling parallel to each other. The waves were initiated through 
the simultaneous and localized input of some autocatalyst B into both regions. 

We found that conditions for the initiation of travelling waves were independent 
of the magnitude of the local input of the autocatalyst B in the two regions, as 
described by the dimensionless parameters 3~ i) (i = 1, 2). However, these condi- 
tions did depend on the strength of the decay relative to the production step, given 
by the dimensionless parameter k = k2/k lao (where a0 is the uniform initial concen- 
tration of reactant A), and the strength of the coupling between the two regions, 
characterized by the dimensionless parameter 3'. In particular, we found that waves 
would form for all values o f k  when 3'< 1, but required k <  (23' - 1)/(3' - 1) when 
3" > 1. (Note that for the uncoupled system, travelling waves can develop in region I 
only when k < 1, [2].) 

In a systematic analysis of this problem we identified the solution valid for small 
initial inputs of autocatalyst B, i.e. 3~ i) << 1, as one which gave a clear insight into 
the nature of the solution of the general problem. Using this approach, we were 
able to identify the conditions on 3" and k required for the initiation of reaction-dif- 
fusion travelling waves. These waves, which are the large time limit of the system, 
propagate with a constant speed v, their asymptotic wave speed, and are of perma- 
nent form, i.e. depend only on the single travelling co-ordinate y = x - vt. The  
small/3~ i) analysis also enabled us to determine the asymptotic wave speed v. In the 
present paper we use this approach to examine the conditions under which perma- 
nent-form travelling waves develop when, in region I, we have an autocatalytic pro- 
duction step, either quadratic (1 a) or cubic. 

A+2B---~3B rate k3ab 2 (lc) 

together with either a linear decay step (1 b) or a quadratic decay step 

B+B---~2C rate kab 2. (ld) 

In region II we assume that there is still just an autocatalytic production step, either 
quadratic (1 a) or cubic (lc). The coupling between the two regions is, in all cases, 
assumed to be via a linear diffusive interchange of autocatalyst B. (A schematic 
representation ofthe physical model is shown in fig. 1). The conditions under which 
travelling waves develop in region I, when not coupled to region II, have been treat- 
ed in some detail by Merkin et al. [2] and Merkin and Needham [3,4]. 

The main purpose of our small 3~i) analysis is to try to determine the conditions 
under which termination step in region I, characterized by the dimensionless 
parameter k, can inhibit (if at all) the formation of travelling waves in region II as 
the strength of the coupling between the two regions is varied. We find that we are 
able to do so for all but two cases, namely those which involve cubic autocatalysis 
in both regions I and II with either linear or quadratic decay steps in region I. In the 
former case we find that waves cannot be initiated for any values of 3' and k for small 
I (') "nitial inputs and there are threshold values for the 3~" to be overcome before 
wave formation could be achieved, (a similar situation was found in the uncoupled 
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A+nB > ( n + l ) B ,  (m,n= 1,2) 

mB >C 
< > 

I W A V E S ~ COUPLING 
VIA B 

WAVES 
< > 

A+pB > ( p + l ) B  (p= l ,2 )  

Fig. 1. A schematic representation of the physical model. 

system, [3]). The latter gives rise to a zero eigenvalue and further considerations 
are required to determine the behaviour in this case. 

We start by giving the dimensionless form of the equations for the initial-value 
problem. The appropriate non-dimensionalization, as well as some general a priori 
bounds, has already been given in [1]. 

2. Equa t ions  

From Merkin et al. [1] we have the following initial-value problem on 
- c ~ < x < ~ ,  t~>0, for the dimensionless concentrations ( a t , i l l )  in region I and 
(a2,/32) in region II of species A and B. 

0 a l  o r a l  
0 ~ - -  OX ~ alf l~ ,  (2a) 

031 -- 02ill --}- al/~ 7 -- kfl 7 q- ~(f12 -- ill) 
Ot Ox 2 

(2b) 

Oa2 oR a2 
Ot Ox 2 

aEfl~, (2c) 

o& o R& 
o t  - O x  ~ + a2f l~  + "r(fll - &) 

(where m, n,p = 1 or 2). The initial and boundary conditions are 

a i =  1, fli=fl~i)hi(x) at t = 0 ,  - ~ < x < o o ,  

(2d) 

(3a) 

ai---~l, /3i---~0 as I x l ~ o o  ( t>0)  (3b) 
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(i = 1, 2), where 

gi(x),  Ixl< , 
hi(x) 

0, Ixl> , 

and where the gi(x) are continuous and differentiable on Ixl < ~ and have a maxi- 
m u m  value of  unity on this interval. 

The physical situation modelled by eqs. (2) is that  of  relatively thin reaction 
zones (regions I and II) along which chemical species A and B are free to diffuse. 
The two regions are coupled through the transverse diffusion of  the autocatalyst  B, 
represented by a linear exchange term, the strength of  which is characterized by 
the dimensionless parameter  9'. A schematic description of the model  is given in 
fig. 1 and is described in more detail in [1]. 

In [1 ] we established the a priori bounds for initial-value problem (2, 3): 

O<~ai(x,t)<.l, O<~13i(x,t)~2 +/~1) jr./~2) (4) 

(i = 1, 2) on - o o < x < o o ,  t~>0. We were then able to use (4) to show that  the 
initial-value problem (2, 3) had a unique global solution. These existence and 
uniqueness properties, as well as the boundedness of  the solution, underpin  our  
small/3~ ') solutions, which is what  we discuss next. 

3. So lu t ion  for  j3~ i) small  

(,) 
Here we consider the solution of initial-value problem (2, 3) for /3~ small 

(') 0) ,~0 (i = 1, 2). TO do this we put/3~' = eBb (i = 1, 2) where 0 < e < <  1 and the B~' are of  
O(1) as e ~ 0. We look for a solution by expanding 

ai(x, t)  = 1 + erAi(x,t) + . . .  , J3i(x,t) = eBi(x,t) + . . .  (5) 

(i = 1, 2) as e -+  0. Here r = 1 if any of  m, n,p = 1 and r -- 2 otherwise. 
The equations for the Bi become decoupled from those for the A; at leading order  

and it is these that  we concentrate on. The form of  the (linear) equations for the Bi 
depends on the nature of the reaction term and we start by considering quadrat ic  
autocatalysts (p = 1) in region II. 

(i) Quadratic autocatalysts in region H 
Here eq. (2d) becomes at leading order, on using (5), 

O B2 02B2 
0~- -- Ox -------~ "k "/B1 -F (1 - 7)B2. (6a) 

We treat the cases of quadrat ic  (n = 1) and cubic (n = 2) autocatalysis with linear 
(m = 1) and quadrat ic  (m = 2) decay in region I separately. The case of  quadrat ic  
autocatalysis and linear decay has already been treated fully in [1 ]. 
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( a ) Quadratic autocatalysis with quadratic decay 
Here eq. (2b) becomes, at leading order, 

OB1 02B1 
Ot -- Ox 2 + (1 - "y)B1 + "yB2. (6b) 

To solve eqs. (6a, 6b), subject to the appropriate initial and boundary conditions 
derived directly from (3), we employ the same method as was used in [1]. We look 
for a solution by writing 

B1 (x, t) = C1 e at u(x, t), B2(x, t) = C2 e At u(x, t), (7) 

where u(x, t) satisfies the diffusion equation (i.e. ut = Uxx) and where C1 and C2 
are constants. The eigenvalues A are then determined from the homogeneous linear 
equations 

(A - 1 + 7)C1 - "yC2 = O, 

-')'C1 -J- ( / ~  - -  1 + 7)C2 = O, 

(8a) 

(8b) 

giving the quadratic equation for 

A2-  2 ( 1 - 7 ) A +  1 - 2 7 = 0 .  (9a) 

It is straightforward to show that eq. (9a) has the roots 

A + = I ,  A _ = 1 - 2 7 .  (9b) 

From (9b) we can see that at least one eigenvalue A+ is positive for all parameter 
values and reveals an exponential growth in the Bi for x of O(1) as t -~  oo. This leads 
to the expansion (5) becoming non-uniform with the growth in the Bi indicating 
wave formation for all values of k and 7. Moreover, we can use the argument pre- 
sented in [ 1] to deduce that the asymptotic wave speed will be 

v = 2X/2X/~+ = 2. (9c) 

Thus, in this case, permanent-form travelling waves will be initiated for all values 
of k and 7 and will ultimately travel with the same uniform wave speed given by 
(9c). 

( b ) Cubic autocatalysis with linear decay 
Here eq. (2b) becomes, at leading order, 

OB1 02B1 
O~ - Ox ~ (7 + k)B1 + 7B2. (lOa) 

Carrying out the same analysis as described above, we find that the equation for 
the eigenvalues A is 

A 2 - (1 - k - 27)A + (Tk - 7 - k) = 0. (10b) 
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As above, we will have exponential growth in the Bi leading to wave formation if 
at least one of the eigenvalues is positive. Hence we need consider only 

A+ = 1(1 - 2 ,y-  k + V/(1 + k)2 + 472).  (10c) 

It is relatively straightforward to show that ,~+ = 0 on the curve 

e = {  (7 ,k ) :v> l  'k  - 3'-17 } (10d) 

with )~+ > 0 in the region in the (3', k)-plane below the curve e, i.e. waves will be 
initiated for all k when 741  and for k < 7 / ( 7 -  1) when 3'> 1. Moreover, their 
asymptotic wave speed will be given by 

I( ;i, v =  2 1 - 2 7 - k +  +k)  2+4-), 2 (10e) 

( c ) Cubic autocatalysis with quadratic decay 
Here, eq. (2b) becomes at leading order 

OB1 02B1 
0 ~ -  - -  OX 2 ~- 7(B2 - B1) ( l la)  

with the consequent equation for the eigenvalues 

A2-  (1 - 2~,)A-7 = 0. (l lb) 

The largest root ofeq. (1 lb) is 

A+---l(1-2~'-t-  l + x / i - - ~ ) .  (llc) 

Clearly A+ > 0 for all parameter values and hence wave formation is indicated for 
all values ofk and 7, with asymptotic wave speed 

v =  I2(1-2") ,+  1 ~ ) ]  1/2 (lld) 

We now go on to examine the case when there is a cubic autocatalytic production 
step (p = 2) in region II. 

( ii) Cubic autocatalysis in region H 
Here, to leading order, eq. (2d) becomes, using (5), 

O B2 OZ B2 
Ot -- Ox T + 7(B1 - B2). (12) 

We again treat the various cases of autocatalysis and decay in region I. 
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( a) Quadratic autocatalysis with linear decay 
Here eq. (2b) becomes, at leading order 

OB1 02B1 
O~ -- Ox -----T ~- (1 - k - 7)B1 + 7B2. (13a) 

On applying (7) in eqs. (12, 13a) we obtain the eigenvalue equation 

)`2_ (1 - k -  2'),))` + 7 ( k -  1 ) = 0 .  (13b) 

It is straightforward to show that the largest eigenvalue )`+ satisfies 

)`+>0 if k < l ,  

) ` + = 0  if k = l ,  

)`+<0 if k > l ,  (13c) 

for all values of 3'. (13c) shows that waves will be initiated when k <  1 while for 
k > 1 the system is asymptotically stable to small inputs of B independent of the 
strength of the coupling between the two regions. The zero eigenvalue )`+ = 0 when 
k = 1 needs further discussion. Also, for k < 1, the asymptotic wave speed will be 

v = I2(1 - k - 2 7 + ~ / ( 1 - k ) 2 + 4 ~ 2 ) l l / 2  (13d) 

( b ) quadratic autocatalysis with quadratic decay 
Here eq. (2b) becomes, at leading order, 

OB1 02B1 
Ot - Ox 2 + (1 - "y)B1 - 7B2 (14a) 

with, via (7), the corresponding eigenvalue equation 

)2 _ (1 - 23'))` - 7 = 0, (14b) 

which gives 

)`+ = ½((1 - 27) + ~ )  . (14c) 

(14c) shows that )`+ >0  for all 7 > 0  and hence wave formation is indicated for all 
values ofk  and 7. This case is essentially the same as part i(c) above with the asymp- 
totic wave speed given by (1 ld). 

( c ) Cubic autocatalysis with linear decay 
Here eq. (2b) becomes, at leading order, 

0B1 02B1 
0~- -  Ox ~ (k + 7)Bl + TB2 , 

leading to the eigenvalue equation 

(15a) 
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A 2 + (k + 27)A + 7k = 0. (lSb) 

Equation (15b) gives for the largest root A+ 

1 ,/k2 < 0  A+ = i [ - ( k  + 2 7 ) +  +4721 (15c) 

for a l l k > 0 , 7 > 0 .  
In this case the system is always asymptotically stable to small initial inputs of 

autocatalyst B, returning to its unreacted state (a --- 1,/3 _-- 0) for t large. Thus we 
• ( ) /  . . . .  

expect that there will be some threshold value on/3~ for wave initiation. It could 
also be the case that wave formation does not take place for any values of/3~ i). How- 
ever, for the uncoupled system we have shown [3] that there is a finite value of the 
input parameter/3o above which waves are initiated and we would expect a similar 
situation to apply here. Further consideration to this point will be given below. 

( d) Cubic autocatalysis with quadratic decay 
Equation (2b) becomes, at leading order, 

OB1 o~B1 
0--7 - Ox ~ ~- "),(BE -- B1). (16a) 

This, together with eq. (12), leads to a zero eigenvalue case, i.e. 

A+ = 0  (16b) 

for all parameter values. No conclusion as to whether waves are formed can be 
drawn from this small/3~ i) analysis and further considerations are needed. 

(iii) Zero eigenvalue case 
Here we consider the case of cubic autocatalysis in both regions I and II with a 

quadratic decay step in region I. We look for a solution for/3~iJ small by expanding 
via (5), and now retaining the terms of O(e) in eqs. (2b, 2d). We obtain 

OB1 02B1 
Ot -- Ox 2 + ")'(B2 - BI) + e(1 - k)B~, (17a) 

O B2 02B2 
O t  - O x  2 + ~,(B1 - B2) + ebb. 

It is convenient at this stage to introduce the functions 

p(x , t )=½(Bl  +B2) ,  q ( x , t ) = ½ ( B z - B 1 ) .  

When (18a) is applied to eqs. (17), we obtain 

Op O2p 
Ot -- Ox 2 ~- -2 [(2 - k)q 2 + (2 - k)p 2 + 2kpq] , 

(17b) 

(18a) 

(18b) 
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Oq- - O2q  27q+  [kp 2 + k q  2 + 2 ( 2 - k ) p q ]  (18c) 
Ot OX 2 

We look for a solution ofeqs. (18) by expanding 

p(x ,  t) = po(x,  t) + ep1(x, t) + . . . ,  (19a) 

q(x, t) = qo(x, t) + cql (x, t) + . . . .  (19b) 

At leading orderp0 (x, t) satisfies a diffusion equation with solution 

F po(x,  t) = bo(s) e -s~t+isx ds, (20a) 
o o  

while qo (x, t) satisfies the equation 

Oqo _ 02qo 27q0 (20b) 
Ot OX 2 " 

Equation (20b) has a solution in the form 

F q0(x, t) = e -27t (to(s) e -s2t+isx ds. (20c) 
o o  

Here/30 and q0 are the Fourier transforms of the initial values of p0 and qo, derived 
in an obvious way from (3). 

For our present purposes it is the behaviour of p0 and q0 for t large that is of inter- 
est. We find that r 1 = x/ t  1/2 is the appropriate variable to use and then, with r 1 of 
O(1) and t large, we have 

po(rl, t) ~ po(O)t -1/2 e - r ~ / 4  , 

qo(rl, t) ~ 00(0)t -1/2 e -2"Yt e -r~/4 . 

(21a) 

(21b) 

We are now in a position to discuss the terms of O(e). Again we require only 
the behaviour as t--+ oo. Using (21) and noting that q0 is exponentially small for t 
large and r/of O(1 ), we find thatpl  and ql are of the form 

pl  = F l ( r l ) - t - O ( t - 1 ) ,  ql = t - lGl(r l )  + o ( t - 1 ) ,  (22) 

where 

k ^  2 
G1 = ~-~Tp0(0) exp(-rla/2) (23a) 

and where F1 satisfies the equation 

" 1 ' = - ½ ( 2 -  (23b) /7{ + g~TF~ k)/~0(0) 2 exp(-r/2/2) 

(where primes denote differentiation with respect to r/). Equation (23b) has the 
solution 
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F1 = - (2 - k)b0(0) 2 exp(-s2/4)  erfc(s/2) ds + A1 erfc(r//2),  (23c) 

where the constant  AI is indeterminate at this stage. 
F rom (21) and (23) we then have, for t large, 

p(r/, t) ~ ^  e-r~/4 
p0(0) ~ + eFl (rl) + . . . ,  (24a) 

e -2"rt G1 (r]) 
q(rht ) ,-~t)0(0) t-~-5-e-r~/4 We t + . . . .  (24b) 

Since F1 (77) and G1 (77) are bounded functions of  r/, a non-uniformity arises in expan- 
sions (19) as t ~ ~ .  This requires an outer region in which the appropriate  scalings 
a r e  

X = e_x, "r = e~t, (25a) 

with 

p ( x , r ) = e e ( x , r ) ,  q(x,r)=e3Q(X,r) .  (25b) 

Substituting (25) into eqs. (18) gives, at leading order, 

Or OX 2 t- 1 - / 2 ,  (26a) 

k 2 (26b) Q= e 
subject, on matching with (24), to 

P(X,r),.obo(O)r-1/2exp(-X2/4"r) as r - + 0  + 

with the matching of Q following automatically.  
We now consider eqs. (26). For  k > 2 it is s traightforward to show using the com- 

parison theorem for scalar parabolic operators [5] (comparing with the function 
¢ = 2/(2 - k)~- that  

IP(X,r)l<~Cr -1 as r ~ c c  (27a) 

for some constant  C > 0 and independent of  X. This then implies, f rom (26b), that  

kC2 -2 
IQ(X,r)l~< - ~ - r  as T--+~z. (278) 

Hence,  when k > 2, the expansion remains uniform with the c~i and/3,' returning to 
their unreacted states as r --~ cx~ and travelling waves are not  initiated. 

For  k < 2 ,  eq. (26a) is of  the Fujita-type, (see, for example, Levine [6]) and has a 
finite-time pointwise blowup. Thus wave formation is indicated in the case when 
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k < 2. (The finite-time blowup introduces further non-uniformities into the expan- 
sion as the solution is controlled by the a priori bounds (4).) 

The above discussion applies also to the critical k = 1 case when there is quadra- 
tic autocatalysis with linear decay in region I, as identified above. The equations 
arising from expansion (5) are the same to O(e) (with k = 1) for this case. Thus, in 
this critical case, travelling wave initiation is suggested, but on the much larger 
O(e -2) time scale. 

The small 30(,') analysis of this section has identified two cases where further dis- 
cussion is necessary, namely where there is cubic autocatalysis in both regions I and 
II and with linear and quadratic decay steps in region I. In the former case a thresh- 
old on the local input of autocatalyst B is suggested, while in the latter an extended 
two-time scale analysis suggests wave formation on the longer O(e -2) time scale 
only for k < 2. Further information about these two special cases can be obtained 
from their solution for strong coupling, which is what we address next. 

4. Solut ion for 3' >> 1 

The basic structure for the general case has already been treated in [1], where a 
multiple-scales approach was used to obtain a solution for 7 large. This treatment 
shows that, at leading order, 

al = A1 (x, t), O~2 = A2(x, t), (28a) 

and that 131 and/32 become equal on the short 0(7 -1) time scale with 

/31 (X, t) =/32(X, t) = B1 (x, t). (28b) 

The equations satisfied by the functions AI and A2 are then the same as those satis- 
fied by Ot 1 and a2 (with (28b) used for/31 and 132) while B1 satisfies an equation in 
which the kinetics are "averaged" over the two regions. This leads to, for the two 
cases we wish to consider (cubic autocatalysis in regions I and II with either linear 
or quadratic decay in region I), 

0/11 02A1 

Ot Ox 2 

0.42 c92A2 
Ot Ox 2 

A I B  2 , (29a) 

A2B~ (29b) 

together with, for linear decay in region I, 

0W 1 0 2 B l  + I(A1B~I A t- A2B~I-NB1) 
Ot Ox T 

(29c) 

and, for quadratic decay in region I, 
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OB1 __ 0 2 B I  -t- I/~11 (A1 -t- A2 - k )  
Ot Ox 2 

The initial conditions are 

(29d) 

A ~ ( x , O ) = l ,  A2(x, 0 ) = l ,  (30a) 

nl (x,0) = l[/~l)hl (x) --}- fl~2)h2(x)] . (30b) 

It is readily shown, by subtracting eqs. (29a, b) and using (30a), that 

Al(X,t) = A2(x,t) (31) 

with eqs. (29c) and (29d) then becoming, respectively, 

OB1 OZB1 k 
Ot - Ox 2 + A1B~ - ~BI (32a) 

and 

OB1 02B1 k 
Ot - Ox 2 + A 1 B ~ - ~ B ~ .  (32b) 

The system is then given by eq. (29a) together with either eq. (32a) or (32b). 
Taking the linear decay case first. Equations (29a, 32a) have already been treated 

in some detail in [3] where it was shown that travelling waves are initiated only 
when k ~< 0.093 and that, when this is the case, there is a (finite) threshold on the 
input of B for waves to form, with a lower bound on this threshold being, in the pres- 
ent case, (fin (I) +/3~ 2)) >k.  The existence of a threshold on the/3~ i) was suggested by 
the small ~3~ r) analysis of the previous section. 

Turning to the case of quadratic decay, eqs. (29a, 32b) have been discussed in 
some detail in [4] where it is shown that waves can be initiated for all k < 2, with 
there being no threshold on the input of B for this to occur. The small/30(i) analysis in 
the previous section was unable to determine whether waves would be initiated or 
not in the critical k = 2. The present analysis shows that travelling waves are not 
initiated in this critical case, at least in the limit of'), large. 

5. Discussion 

As in our previous studies of uncoupled systems [2,3,4,7], considerable differ- 
ences exist in the basic mechanisms of travelling wave formation between quadratic 
autocatalysis and cubic autocatalysis. We found this to be the case here. Consider- 
ing first the case when there is purely quadratic autocatalysis in region II, we found 
that when there is the relatively weak quadratic decay step in region I waves are 
formed regardless of how strong this decay strength is and how strong the coupling 
between the two regions is, for both quadratic and cubic autocatalytic production 
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in region I. In this case the production of  autocatalyst  B in region II and its subse- 
quent  diffusive transfer to region I is always sufficient to overcome the loss o f  B in 
region I. 

Travelling waves can still form in region I when this has the relatively stronger 
linear decay step, but  now there are restrictions on the parameters  7 and k for this 
process to take place, at least f rom small initial inputs of  B. For  weak coupling 
(7 ~< 1) waves form no mat ter  how strong the decay step but  for s tronger coupling 
between the two regions there is an upper bound on k beyond which wave format ion  
in inhibited, with this threshold value o f k  being slightly higher for quadrat ic  auto- 
catalysis in region I. A further  advantage of  the small input analysis was that  it sug- 
gested a value for the asymptotic wave speed. The situation for this case is 
summarized  in table 1. 

We have already seen f rom our previous work on uncoupled systems [3,4,7] 
that  cubic autocatalysis is a much  less vigorous product ion mechanism than quad- 
ratic autocatalysis and consequently any decay process can have a more  substantial  
effect on the initiation of  travelling waves. This is also seen in the present  context.  
In all cases there are restrictions on the decay rate and coupling parameters  for 
wave initiation. When cubic autocatalytic production is coupled to the more  vigor- 
ous quadrat ic  autocatalyt ic  production the effect of  the linear terminat ion step is 
to limit the range o f  values o f k  but not  those of  7 over which waves are formed.  

However,  when there is cubic autocatalytic product ion in both  regions, the effect 
of  the decay step is much  more  pronounced,  leading to no wave format ion  at all 
for small inputs of  B when there is a strong linear decay. The weaker  quadrat ic  
decay step gave a zero eigenvalue and our initial approach was inconclusive. A 
fur ther  ref inement  of  the method  for this case, examining the effect of  the higher 
order  terms, showed that  waves would be initiated for k < 2  but  on a much  longer 
time scale than in the previous cases. The situation is summarized in table 2. 

Table 1 
Quadratic autocatalysis (p = 1) in region II together with various autocatalytic and decay steps in re- 
gion I. Wave speed v calculated from the largest eigenvalue A+ via v = 2~/X-++. 

Reaction in I Waves formed Wave speed, v = 2v~+ 

Quadratic with linear all k, 3' ~< 1 

decayn = 1,m = 1 k< ~_-1~ ,7> 1 

Quadratic with quadratic all k and 7 
decayn = 1, m = 2 

Cubic with linear all k, 7 ~< 1 
decayn = 2,m = 1 k< 7 7 -  1 '7>1 

Cubic with quadratic all k and 3' 
decayn = 2,m = 2 

2 

)] 1'2 
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Table 2 
Quadrat ic  autocatalysis (p = 2) in region Ii ,  together with various autocatalytic and decay steps in re- 
gion I. Wave speed v (where given) calculated from the largest eigenvalue A+ via v = 2x/X+-+. 

React ion in I Waves formed Wave speed, v = 2v/X-++ 

Quadrat ic  with linear 
decay n = 1, m = 1 

Quadrat ic  with quadrat ic  
decay n = 1, m = 2 

Cubic with linear 
decay n = 2, m = 1 

Cubic with quadrat ic  
decayn -- 2,rn = 2 

k <  I for all 3' 

all k and 3' 

threshold on 30 

(~+ = o) 
k < 2  for all3' 

To gain further insight into the behaviour of the solution in these two cases, we 
considered the solution for large 7. The enabled the system to be reduced to cases 
treated previously [3,4] and thus conclusions drawn. It confirmed the k < 2 condi- 
tion for quadratic autocatalysis as well as excluding critical value k --- 2, which our 
small 30( i)- analysis was unable to resolve. For linear decay it showed that there was 
a finite threshold on the 30( 0 for wave formation and also suggested that this would 
occur only for very restricted values ofk. 

Finally, we should note that, even in the region R_ (say) in the (7, k) plane where 
both eigenvalues are negative and the unreacted state in locally stable, travelling 
wave formation for finite amplitude inputs of B is not precluded, i.e. there could still 

(0 0) be some threshold on the/3~. This cannot be decided by our small/3~' theory. One 
way or resolving this is to determine the region RT in the (7, k) plane where perma- 
nent-form travelling wave solutions exist. Thresholds on the 30(i) should then be 
expected in the intersection of R_ and RT, and in the remainder of R_ global asymp- 
totic stability of the unreacted state should be expected. For the case examined in 
detail in [1] (i.e. quadratic autocatalysis in both regions with linear decay in one), it 
was shown that the region in the (7, k) plane in which at least, one of the eigenvalues 
of the small input analysis was strictly positive was precisely that region in which 
waves were initiated for all inputs, the unreacted state being globally asymptotic 
stable outside this region. Thus the small input analysis gave the conditions for 
wave formation that applied in the general problem. 

Throughout we have assumed that the coupling between the two regions is 
achieved via the autocatalyst B. The situation where the two regions are coupled 
through the reactant A has been treated by Metcalf et al. [8] and Merkin et al. [9], 
with distinct differences with the present case being found. 
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